

MCS-021 solved assig

january 2018 session

1. Write an algorithm that acce
Binary Tree

A.1.

Tree represents the nodes

tree or binary search tree s
Binary Tree is a special data

binary tree has a special co

of two children. A binary tre
and a linked list as search i

deletion operation are as fa

PROCEDURE CONVERT

[Given a forest of trees, it is required

tree with a list head (HEAD)].

1. [Initialize]

HEAD <-- NODE

LPTR(HEAD) <-- NULL

RPTR(HEAD) <-- HEAD

021 solved assignment july 2017

anuary 2018 session

m that accepts a Tree as input and prints the corres

 nodes connected by edges. We will discuss

h tree specifically.
cial datastructure used for data storage pur

ecial condition that each node can have a m

inary tree has the benefits of both an ordere
search is as quick as in a sorted array and in

re as fast as in linked list.

f trees, it is required to convert this forest into an equivalent b

ead (HEAD)].

nment july 2017-

 the corresponding

discuss binary

age purposes. A

ave a maximum

n ordered array
y and insertion or

nto an equivalent binary

LEVEL[1] <-- 0

LOCATION TOP <-- 1.

2. [Process the input]

Repeat thru step 6 while input is there.

3. [Input a node]

Read(LEVEL,INFO).

4. [Create a tree node]

NEW <-- NODE

LPTR(NEW) <-- RPTR(NEW) <-- NULL

DATA(NEW) <-- INFO.

5. [Compare levels]

PRED_LEVEL <-- LEVEL[TOP]

PRED_LOC <-- LOCATION[TOP]

if LEVEL > PRED_LEVEL

then LPTR(PRED_LOC) <-- NEW

else if LEVEL = PRED_LEVEL

RPTR(PRED_LOC) <-- NEW

TOP <-- TOP – 1

else

Repeat while LEVEL != PRED_LEVEL

TOP <-- TOP – 1

PRED_LEVEL <-- LEVEL[TOP]

PRED_LOC <-- LOCATION[TOP]

if PRED_LEVEL <-- LEVEL

then write (“Invalid Input”)

return

RPTR(PRED_LOC) <-- NEW

TOP <-- TOP – 1.

6. [Pushing values in stack]

TOP <-- TOP + 1

LEVEL[TOP] <-- LEVEL

LOCATION[TOP] <-- NEW.

7. [FINISH]

return.

Q.2. Write an algorithm for the
A.2.

AVL tree is a self-balancing Binary Sea

heights of left and right subtrees cann

An Example Tree that is an AVL Tree

The above tree is AVL because differ

for every node is less than or equal t

An Example Tree that is NOT an AVL

The above tree is not AVL because di

subtrees for 8 and 18 is greater than

Why AVL Trees?

Most of the BST operations (e.g., sea

where h is the height of the BST. The

skewed Binary tree. If we make sure

every insertion and deletion, then w

these operations. The height of an AV

nodes in the tree (See this video lect

Insertion

To make sure that the given tree rem

ithm for the implementation of an AVL tree.

balancing Binary Search Tree (BST) where the difference betwee

 right subtrees cannot be more than one for all nodes.

 that is an AVL Tree

 AVL because differences between heights of left and right sub

 less than or equal to 1.

 that is NOT an AVL Tree

 not AVL because differences between heights of left and right

d 18 is greater than 1.

operations (e.g., search, max, min, insert, delete.. etc) take O(h)

ight of the BST. The cost of these operations may become O(n)

ree. If we make sure that height of the tree remains O(Logn) aft

nd deletion, then we can guarantee an upper bound of O(Logn

. The height of an AVL tree is always O(Logn) where n is the nu

video lecture for proof).

at the given tree remains AVL after every insertion, we must au

between

 of left and right subtrees

hts of left and right

lete.. etc) take O(h) time

s may become O(n) for a

remains O(Logn) after

er bound of O(Logn) for all

n) where n is the number of

sertion, we must augment

the standard BST insert operation to perform some re-balancing. Following are two

basic operations that can be performed to re-balance a BST without violating the BST

property (keys(left) < key(root) < keys(right)). 1) Left Rotation 2) Right Rotation
T1, T2 and T3 are subtrees of the tree rooted with y (on left side)

or x (on right side)

 y x

 / \ Right Rotation / \

 x T3 – – – – – – – > T1 y

 / \ < - - - - - - - / \

 T1 T2 Left Rotation T2 T3

Keys in both of the above trees follow the following order

 keys(T1) < key(x) < keys(T2) < key(y) < keys(T3)

So BST property is not violated anywhere.

Steps to follow for insertion

Let the newly inserted node be w

1) Perform standard BST insert for w.

2) Starting from w, travel up and find the first unbalanced node. Let z be the first

unbalanced node, y be the child of z that comes on the path from w to z and x be the

grandchild of z that comes on the path from w to z.

3) Re-balance the tree by performing appropriate rotations on the subtree rooted with

z. There can be 4 possible cases that needs to be handled as x, y and z can be arranged

in 4 ways. Following are the possible 4 arrangements:

a) y is left child of z and x is left child of y (Left Left Case)

b) y is left child of z and x is right child of y (Left Right Case)

c) y is right child of z and x is right child of y (Right Right Case)

d) y is right child of z and x is left child of y (Right Left Case)

a) Left Left Case
T1, T2, T3 and T4 are subtrees.

 z y

 / \ / \

 y T4 Right Rotate (z) x z

 / \ - - - - - - - - -> / \ / \

 x T3 T1 T2 T3 T4

 / \

 T1 T2

b) Left Right Case
 z z x

 / \ / \ / \

 y T4 Left Rotate (y) x T4 Right Rotate(z) y z

 / \ - - - - - - - - -> / \ - - - - - - - -> / \ / \

T1 x y T3 T1 T2 T3 T4

 / \ / \

 T2 T3 T1 T2

c) Right Right Case
 z y

 / \ / \

T1 y Left Rotate(z) z x

 / \ - - - - - - - -> / \ / \

 T2 x T1 T2 T3 T4

 / \

 T3 T4

d) Right Left Case
 z z x

 / \ / \ / \

T1 y Right Rotate (y) T1 x Left Rotate(

 / \ - - - - - - - - -> / \ - - - - - - - -> /

 x T4 T2 y T1 T2 T3

 / \ / \

T2 T3 T3 T4

Implementation

Following is the implementation for

uses the recursive BST insert to inse

insertion, we get pointers to all ance

need parent pointer to travel up. The

ancestors of the newly inserted node

1) Perform the normal BST insertion

2) The current node must be one of t

the height of the current node.

3) Get the balance factor (left subtre

node.

4) If balance factor is greater than 1,

either in Left Left case or left Right c

compare the newly inserted key with

5) If balance factor is less than

either in Right Right case or Right Le

not, compare the newly inserted key

Q.3. Write a note of not more th

area of “Sorting Techniques”.
resources. Indicate them in y

A.3.Sorting Techniques:-

1) Bubble Sort:-

Bubble sort is a simple sort

comparison-based algorithm
compared and the elements

algorithm is not suitable for

complexity are of Ο(n2) whe
We take an unsorted array for our ex

keeping it short and precise.

Bubble sort starts with very first two

greater.

In this case, value 33 is greater than

compare 33 with 27.

\

1 x Left Rotate(z) z y

> / \ / \

 T1 T2 T3 T4

implementation for AVL Tree Insertion. The following impleme

e BST insert to insert a new node. In the recursive BST insert,

 pointers to all ancestors one by one in bottom up manner. So w

ter to travel up. The recursive code itself travels up and visits

newly inserted node.

ormal BST insertion.

ode must be one of the ancestors of the newly inserted node. U

 current node.

e factor (left subtree height – right subtree height) of the curre

or is greater than 1, then the current node is unbalanced and w

t case or left Right case. To check whether it is left left case or n

ly inserted key with the key in left subtree root.

or is less than -1, then the current node is unbalanced and we a

ight case or Right Left case. To check whether it is Right Right c

 newly inserted key with the key in right subtree root.

 not more than 5 pages summarizing the latest resea

chniques”. Refer to various journals and other onlin
 them in your assignment.

ple sorting algorithm. This sorting algorithm

lgorithm in which each pair of adjacent elem
lements are swapped if they are not in orde

table for large data sets as its average and w

) where n is the number of items.
rted array for our example. Bubble sort takes Ο(n2) time so we

s with very first two elements, comparing them to check which

e 33 is greater than 14, so it is already in sorted locations. Next

e following implementation

cursive BST insert, after

tom up manner. So we don’t

ravels up and visits all the

ly inserted node. Update

 height) of the current

is unbalanced and we are

it is left left case or not,

and we are

er it is Right Right case or

 latest research in the

 other online

lgorithm is

ent elements is
 in order. This

e and worst case

) time so we're

them to check which one is

rted locations. Next, we

We find that 27 is smaller than 33 and these two values must be swapped.

The new array should look like this −

Next we compare 33 and 35. We find that both are in already sorted positions.

Then we move to the next two values, 35 and 10.

We know then that 10 is smaller 35. Hence they are not sorted.

We swap these values. We find that we have reached the end of the array. After one

iteration, the array should look like this −

To be precise, we are now showing how an array should look like after each iteration.

After the second iteration, it should look like this −

Notice that after each iteration, at least one value moves at the end.

And when there's no swap required, bubble sorts learns that an array is completely

sorted.

Now we should look into some practical aspects of bubble sort.

Algorithm

We assume list is an array of n elements. We further assume that swapfunction swaps

the values of the given array elements.
begin BubbleSort(list)

 for all elements of list

 if list[i] > list[i+1]

 swap(list[i], list[i+1])

 end if

 end for

 return list

end BubbleSort

2) Insertion Sort:-

This is an in-place comparison-based sorting algorithm. Here, a sub-list is

maintained which is always sorted. For example, the lower part of an
array is maintained to be sorted.

We take an unsorted array for our example.

Insertion sort compares the first two elements.

It finds that both 14 and 33 are already in ascending order. For now, 14

is in sorted sub-list.

Insertion sort moves ahead and compares 33 with 27.

And finds that 33 is not in the correct position.

It swaps 33 with 27. It also checks with all the elements of sorted sub-

list. Here we see that the sorted sub-list has only one element 14, and 27
is greater than 14. Hence, the sorted sub-list remains sorted after

swapping.

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33

with 10.

These values are not in a sorted order.

So we swap them.

However, swapping makes 27 and 10 unsorted.

Hence, we swap them too.

Again we find 14 and 10 in an unsorted order.

We swap them again. By the end of third iteration, we have a sorted sub-
list of 4 items.

This process goes on until all the unsorted values are covered in a sorted
sub-list. Now we shall see some programming aspects of insertion sort.

Algorithm
Now we have a bigger picture of how this sorting technique works, so we
can derive simple steps by which we can achieve insertion sort.
Step 1 − If it is the first element, it is already sorted. return 1;

Step 2 − Pick next element

Step 3 − Compare with all elements in the sorted sub-list

Step 4 − Shift all the elements in the sorted sub-list that is greater than the

 value to be sorted

Step 5 − Insert the value

Step 6 − Repeat until list is sorted

3) Merge Sort :-

Merge sort is a sorting technique based on divide and conquer technique.

With worst-case time complexity being Ο(n log n), it is one of the most
respected algorithms.

To understand merge sort, we take an unsorted array as the following −

We know that merge sort first divides the whole array iteratively into

equal halves unless the atomic values are achieved. We see here that an
array of 8 items is divided into two arrays of size 4.

This does not change the sequence of appearance of items in the original.

Now we divide these two arrays into halves.

We further divide these arrays and we achieve atomic value which can no

more be divided.

Now, we combine them in exactly the same manner as they were broken

down. Please note the color codes given to these lists.
We first compare the element for each list and then combine them into

another list in a sorted manner. We see that 14 and 33 are in sorted
positions. We compare 27 and 10 and in the target list of 2 values we put

10 first, followed by 27. We change the order of 19 and 35 whereas 42
and 44 are placed sequentially.

In the next iteration of the combining phase, we compare lists of two
data values, and merge them into a list of found data values placing all in

a sorted order.

After the final merging, the list should look like this −

Now we should learn some programming aspects of merge sorting.

Algorithm
Merge sort keeps on dividing the list into equal halves until it can no
more be divided. By definition, if it is only one element in the list, it is

sorted. Then, merge sort combines the smaller sorted lists keeping the

new list sorted too.

Step 1 − if it is only one elem

Step 2 − divide the list recurs

Step 3 − merge the smaller list

4) Quick Sort :-

Quick sort is a highly efficie

partitioning of array of data
partitioned into two arrays

specified value, say pivot, b
another array holds values

Partition in Quick S
Following animated represe
an array.

The pivot value divides the
the pivot for each sub-lists

Quick Sort Pivot Alg
Based on our understanding

to write an algorithm for it,
Step 1 − Choose the highest ind

Step 2 − Take two variables to

Step 3 − left points to the low

Step 4 − right points to the hi

Step 5 − while value at left is

Step 6 − while value at right i

Step 7 − if both step 5 and ste

Step 8 − if left ≥ right, the p

Q.4. Write an algorithm for the
A.4.

Doubly Linked List is a variation of L

ways, either forward and backward e

are the important terms to understa
Link − Each link of a linked list can store

Next − Each link of a linked list contains

Prev − Each link of a linked list contains

lement in the list it is already sorted, return

ursively into two halves until it can no more b

ists into new list in sorted order.

ly efficient sorting algorithm and is based on

 of data into smaller arrays. A large array is
 arrays one of which holds values smaller th

 pivot, based on which the partition is made
 values greater than the pivot value.

 Quick Sort
 representation explains how to find the pivo

des the list into two parts. And recursively,
lists until all lists contains only one eleme

 Pivot Algorithm
standing of partitioning in quick sort, we wil

 for it, which is as follows.
index value has pivot

to point left and right of the list excluding p

low index

 high

 is less than pivot move right

t is greater than pivot move left

step 6 does not match swap left and right

e point where they met is new pivot

ithm for the implementation of a Doubly Linked Li

ist is a variation of Linked list in which navigation is possible in

ard and backward easily as compared to Single Linked List. Fo

t terms to understand the concept of doubly linked list.
 linked list can store a data called an element.

linked list contains a link to the next link called Next.

 linked list contains a link to the previous link called Prev.

urn.

e be divided.

ased on

 array is
aller than the

is made and

the pivot value in

sively, we find
e element.

, we will now try

g pivot

y Linked List.

igation is possible in both

ingle Linked List. Following

LinkedList − A Linked List contains the c

link called Last.

Doubly Linked List Represe

As per the above illustration, followi
Doubly Linked List contains a link eleme

Each link carries a data field(s) and two

Each link is linked with its next link usin

Each link is linked with its previous link

The last link carries a link as null to mar

Basic Operations
Following are the basic operat
Insertion − Adds an element at the begin

Deletion − Deletes an element at the beg

Insert Last − Adds an element at the end

Delete Last − Deletes an element from th

Insert After − Adds an element after an i

Delete − Deletes an element from the list

Display forward − Displays the complete

Display backward − Displays the comple

Insertion Operation
Following code demonstrates the ins

linked list.

Example
//insert link at the first location

void insertFirst(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc

 link->key = key;

 link->data = data;

 if(isEmpty()) {

 //make it the last link

 last = link;

 } else {

 //update first prev link

 head->prev = link;

 }

 //point it to old first link

 link->next = head;

d List contains the connection link to the Sirst link called First and to

ly Linked List Representation

 illustration, following are the important points to be considere
ontains a link element called first and last.

ata field(s) and two link fields called next and prev.

ith its next link using its next link.

ith its previous link using its previous link.

a link as null to mark the end of the list.

e basic operations supported by a list.
element at the beginning of the list.

 element at the beginning of the list.

 element at the end of the list.

 an element from the end of the list.

n element after an item of the list.

lement from the list using the key.

splays the complete list in a forward manner.

Displays the complete list in a backward manner.

ion Operation
emonstrates the insertion operation at the beginning of a doub

truct node*) malloc(sizeof(struct node));

k called First and to the last

oints to be considered.

 beginning of a doubly

 //point first to new first link

 head = link;

}

Deletion Operation
Following code demonstrates the deletion operation at the beginning of a doubly

linked list.

Example
//delete first item

struct node* deleteFirst() {

//save reference to first link

 struct node *tempLink = head;

 //if only one link

 if(head->next == NULL) {

 last = NULL;

 } else {

 head->next->prev = NULL;

 }

 head = head->next;

 //return the deleted link

 return tempLink;

}

Insertion at the End of an Operation
Following code demonstrates the insertion operation at the last position of a doubly

linked list.

Example
//insert link at the last location

void insertLast(int key, int data) {

 //create a link

 struct node *link = (struct node*) malloc(sizeof(struct node));

 link->key = key;

 link->data = data;

 if(isEmpty()) {

 //make it the last link

 last = link;

 } else {

 //make link a new last link

 last->next = link;

 //mark old last node as prev of new link

 link->prev = last;

 }

 //point last to new last node

 last = link;

}

