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PROCEDURE CONVERT 

[Given a forest of trees, it is required

tree with a list head (HEAD)].

 

1. [Initialize] 

 

HEAD <-- NODE 

LPTR(HEAD) <-- NULL 

RPTR(HEAD) <-- HEAD 
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LEVEL[1] <-- 0 

LOCATION TOP <-- 1. 

 

2. [Process the input] 

 

Repeat thru step 6 while input is there. 

 

3. [Input a node] 

 

Read(LEVEL,INFO). 

 

4. [Create a tree node] 

 

NEW <-- NODE 

LPTR(NEW) <-- RPTR(NEW) <-- NULL 

DATA(NEW) <-- INFO. 

 

5. [Compare levels] 

 

PRED_LEVEL <-- LEVEL[TOP] 

PRED_LOC <-- LOCATION[TOP] 

if LEVEL > PRED_LEVEL 

then LPTR(PRED_LOC) <-- NEW 

else if LEVEL = PRED_LEVEL 

RPTR(PRED_LOC) <-- NEW 

TOP <-- TOP – 1 

else 

Repeat while LEVEL != PRED_LEVEL 

TOP <-- TOP – 1 

PRED_LEVEL <-- LEVEL[TOP] 

PRED_LOC <-- LOCATION[TOP] 

if PRED_LEVEL <-- LEVEL 

then write (“Invalid Input”) 

return 

 

 

 

RPTR(PRED_LOC) <-- NEW 

TOP <-- TOP – 1. 

 

6. [Pushing values in stack] 

 

TOP <-- TOP + 1 

LEVEL[TOP] <-- LEVEL 

LOCATION[TOP] <-- NEW. 



 

 

 

7. [FINISH] 

return.  
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the standard BST insert operation to perform some re-balancing. Following are two 

basic operations that can be performed to re-balance a BST without violating the BST 

property (keys(left) < key(root) < keys(right)). 1) Left Rotation 2) Right Rotation 
T1, T2 and T3 are subtrees of the tree rooted with y (on left side)  

or x (on right side)            

                y                               x 

               / \     Right Rotation          /  \ 

              x   T3   – – – – – – – >        T1   y  

             / \       < - - - - - - -            / \ 

            T1  T2     Left Rotation            T2  T3 

Keys in both of the above trees follow the following order  

      keys(T1) < key(x) < keys(T2) < key(y) < keys(T3) 

So BST property is not violated anywhere. 

Steps to follow for insertion 

Let the newly inserted node be w 

1) Perform standard BST insert for w. 

2) Starting from w, travel up and find the first unbalanced node. Let z be the first 

unbalanced node, y be the child of z that comes on the path from w to z and x be the 

grandchild of z that comes on the path from w to z. 

3) Re-balance the tree by performing appropriate rotations on the subtree rooted with 

z. There can be 4 possible cases that needs to be handled as x, y and z can be arranged 

in 4 ways. Following are the possible 4 arrangements: 

a) y is left child of z and x is left child of y (Left Left Case) 

b) y is left child of z and x is right child of y (Left Right Case) 

c) y is right child of z and x is right child of y (Right Right Case) 

d) y is right child of z and x is left child of y (Right Left Case) 

 

a) Left Left Case 
T1, T2, T3 and T4 are subtrees. 

         z                                      y  

        / \                                   /   \ 

       y   T4      Right Rotate (z)          x      z 

      / \          - - - - - - - - ->      /  \    /  \  

     x   T3                               T1  T2  T3  T4 

    / \ 

  T1   T2 

b) Left Right Case 
     z                               z                           x 

    / \                            /   \                        /  \  

   y   T4  Left Rotate (y)        x    T4  Right Rotate(z)    y      z 

  / \      - - - - - - - - ->    /  \      - - - - - - - ->  / \    / \ 

T1   x                          y    T3                    T1  T2 T3  T4 

    / \                        / \ 

  T2   T3                    T1   T2 

c) Right Right Case 
  z                                y 

 /  \                            /   \  

T1   y     Left Rotate(z)       z      x 

    /  \   - - - - - - - ->    / \    / \ 

   T2   x                     T1  T2 T3  T4 

       / \ 

     T3  T4 

d) Right Left Case 
   z                            z                            x 



 

 

  / \                          / \                          /  \

T1   y   Right Rotate (y)    T1   x      Left Rotate(

    / \  - - - - - - - - ->     /  \   - - - - - - - ->  / 

   x   T4                      T2   y                  T1  T2  T3 

  / \                              /  \ 

T2   T3                           T3   T4 
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We find that 27 is smaller than 33 and these two values must be swapped. 

 

The new array should look like this − 

 

Next we compare 33 and 35. We find that both are in already sorted positions. 

 

Then we move to the next two values, 35 and 10. 

 

We know then that 10 is smaller 35. Hence they are not sorted. 

 

We swap these values. We find that we have reached the end of the array. After one 

iteration, the array should look like this − 

 

To be precise, we are now showing how an array should look like after each iteration. 

After the second iteration, it should look like this − 

 

Notice that after each iteration, at least one value moves at the end. 

 

And when there's no swap required, bubble sorts learns that an array is completely 

sorted. 

 

Now we should look into some practical aspects of bubble sort. 

Algorithm 



 

 

We assume list is an array of n elements. We further assume that swapfunction swaps 

the values of the given array elements. 
begin BubbleSort(list) 

 

   for all elements of list 

      if list[i] > list[i+1] 

         swap(list[i], list[i+1]) 

      end if 

   end for 

    

   return list 

    

end BubbleSort 

2) Insertion Sort:- 

This is an in-place comparison-based sorting algorithm. Here, a sub-list is 

maintained which is always sorted. For example, the lower part of an 
array is maintained to be sorted. 

We take an unsorted array for our example. 

 

Insertion sort compares the first two elements. 

 

It finds that both 14 and 33 are already in ascending order. For now, 14 

is in sorted sub-list. 

 

Insertion sort moves ahead and compares 33 with 27. 

 

And finds that 33 is not in the correct position. 

 

It swaps 33 with 27. It also checks with all the elements of sorted sub-

list. Here we see that the sorted sub-list has only one element 14, and 27 
is greater than 14. Hence, the sorted sub-list remains sorted after 

swapping. 

 

By now we have 14 and 27 in the sorted sub-list. Next, it compares 33 

with 10. 



 

 

 

These values are not in a sorted order. 

 

So we swap them. 

 

However, swapping makes 27 and 10 unsorted. 

 

Hence, we swap them too. 

 

Again we find 14 and 10 in an unsorted order. 

 

We swap them again. By the end of third iteration, we have a sorted sub-
list of 4 items. 

 

This process goes on until all the unsorted values are covered in a sorted 
sub-list. Now we shall see some programming aspects of insertion sort. 

Algorithm 
Now we have a bigger picture of how this sorting technique works, so we 
can derive simple steps by which we can achieve insertion sort. 
Step 1 − If it is the first element, it is already sorted. return 1; 

Step 2 − Pick next element 

Step 3 − Compare with all elements in the sorted sub-list 

Step 4 − Shift all the elements in the sorted sub-list that is greater than the  

         value to be sorted 

Step 5 − Insert the value 

Step 6 − Repeat until list is sorted 

 

3) Merge Sort :- 

Merge sort is a sorting technique based on divide and conquer technique. 

With worst-case time complexity being Ο(n log n), it is one of the most 
respected algorithms. 

To understand merge sort, we take an unsorted array as the following − 



 

 

 

We know that merge sort first divides the whole array iteratively into 

equal halves unless the atomic values are achieved. We see here that an 
array of 8 items is divided into two arrays of size 4. 

 

This does not change the sequence of appearance of items in the original. 

Now we divide these two arrays into halves. 

 

We further divide these arrays and we achieve atomic value which can no 

more be divided. 

 

Now, we combine them in exactly the same manner as they were broken 

down. Please note the color codes given to these lists. 
We first compare the element for each list and then combine them into 

another list in a sorted manner. We see that 14 and 33 are in sorted 
positions. We compare 27 and 10 and in the target list of 2 values we put 

10 first, followed by 27. We change the order of 19 and 35 whereas 42 
and 44 are placed sequentially. 

 

In the next iteration of the combining phase, we compare lists of two 
data values, and merge them into a list of found data values placing all in 

a sorted order. 

 

After the final merging, the list should look like this − 

 

Now we should learn some programming aspects of merge sorting. 

Algorithm 
Merge sort keeps on dividing the list into equal halves until it can no 
more be divided. By definition, if it is only one element in the list, it is 

sorted. Then, merge sort combines the smaller sorted lists keeping the 

new list sorted too. 



 

 

Step 1 − if it is only one elem

Step 2 − divide the list recurs

Step 3 − merge the smaller list
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LinkedList − A Linked List contains the c

link called Last. 

Doubly Linked List Represe

As per the above illustration, followi
Doubly Linked List contains a link eleme
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Basic Operations 
Following are the basic operat
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Display forward − Displays the complete
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Insertion Operation
Following code demonstrates the ins

linked list. 

Example 
//insert link at the first location 

void insertFirst(int key, int data) { 

 

   //create a link 

   struct node *link = (struct node*) malloc

   link->key = key; 

   link->data = data; 

  

   if(isEmpty()) { 

      //make it the last link 

      last = link; 

   } else { 

      //update first prev link 

      head->prev = link; 

   } 

 

   //point it to old first link 

   link->next = head; 
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   //point first to new first link 

   head = link; 

} 

Deletion Operation 
Following code demonstrates the deletion operation at the beginning of a doubly 

linked list. 

Example 
//delete first item 

struct node* deleteFirst() { 

//save reference to first link 

   struct node *tempLink = head; 

    //if only one link 

   if(head->next == NULL) { 

      last = NULL; 

   } else { 

      head->next->prev = NULL; 

   } 

   head = head->next; 

   //return the deleted link 

   return tempLink; 

} 

Insertion at the End of an Operation 
Following code demonstrates the insertion operation at the last position of a doubly 

linked list. 

Example 
//insert link at the last location 

void insertLast(int key, int data) { 

  //create a link 

   struct node *link = (struct node*) malloc(sizeof(struct node)); 

   link->key = key; 

   link->data = data; 

    if(isEmpty()) { 

      //make it the last link 

      last = link; 

   } else { 

      //make link a new last link 

      last->next = link;      

       

      //mark old last node as prev of new link 

      link->prev = last; 

   } 

 

   //point last to new last node 

   last = link; 

} 


