BCS 012 Solved assignment july 2017 and January 2018 session

Q. 1
A. 1

Q. 2
A. 2

$$
\mathrm{A}=\left(\begin{array}{rrr}
3 & 4 & 7 \\
2 & -1 & 3 \\
1 & 2 & -3
\end{array}\right), X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \text { and } \mathrm{B}=\left(\begin{array}{r}
14 \\
4 \\
0
\end{array}\right)
$$

The cofactors of $|\mathrm{A}|$ are
$\mathrm{A}_{11}=(-1)^{1+1}\left|\begin{array}{rr}-1 & 3 \\ 2 & -3\end{array}\right|=-3 \quad \mathrm{~A}_{12}=(-1)^{1+2}\left|\begin{array}{cc}2 & 3 \\ 1 & -3\end{array}\right|=9$
and $A_{13}=(-1)^{1+3}\left|\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right|=5$.
$\therefore|\mathrm{A}|=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}=(3)(-3)+4(9)+7(5)=62$.

Since $|\mathrm{A}| \neq 0, \mathrm{~A}$ is non-singular (invertible). Its remaining cofactors are

$$
\begin{aligned}
& \mathrm{A}_{21}=(-1)^{2+1}\left|\begin{array}{cc}
4 & 7 \\
2 & -3
\end{array}\right|=26, \quad \mathrm{~A}_{22}=(-1)^{2+2}\left|\begin{array}{cc}
3 & 7 \\
1 & -3
\end{array}\right|=-16, \\
& \mathrm{~A}_{23}=(-1)^{2+3}\left|\begin{array}{cc}
3 & 4 \\
1 & 2
\end{array}\right|=-2, \quad \mathrm{~A}_{31}=(-1)^{3+1}\left|\begin{array}{cc}
4 & 7 \\
-1 & -3
\end{array}\right|=19,
\end{aligned}
$$

$$
\mathrm{A}_{32}=(-1)^{3+2}\left|\begin{array}{ll}
3 & 7 \\
2 & 3
\end{array}\right|=5, \quad \mathrm{~A}_{33}=(-1)^{3+3}\left|\begin{array}{cc}
3 & 4 \\
2 & -1
\end{array}\right|=-11
$$

The adjoint of matrix A is given by

$$
\begin{gathered}
\operatorname{adj} A=\left(\begin{array}{rrr}
-3 & 26 & 19 \\
9 & -16 & 5 \\
5 & -2 & -11
\end{array}\right) \\
\therefore A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{62}\left(\begin{array}{rrr}
-3 & 26 & 19 \\
9 & -16 & 5 \\
5 & -2 & -11
\end{array}\right) \\
\text { Also, } \mathrm{X}=\mathrm{A}^{-1} \mathrm{~B}
\end{gathered} \begin{array}{r}
\frac{1}{62}\left(\begin{array}{rrr}
-3 & 26 & 19 \\
9 & -16 & 5 \\
5 & -2 & -11
\end{array}\right)\left(\begin{array}{c}
14 \\
4 \\
0
\end{array}\right) \\
\Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{62}\left(\begin{array}{rrr}
-3 & 26 & 19 \\
9 & -16 & 5 \\
5 & -2 & -11
\end{array}\right)\left(\begin{array}{c}
14 \\
4 \\
0
\end{array}\right) \\
\Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{62}\left(\begin{array}{ccc}
-42 & +104 \\
126 & -r 64 \\
70 & -8
\end{array}\right)=\frac{1}{62}\left(\begin{array}{l}
62 \\
62 \\
62
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
\end{array}
$$

Hence $x=1, y=1, z=1$ is the required solution.

Q. 3

A. 3 Assume $\mathbf{n}=\mathbf{k}$; and solve it..

We shall now show that the true of P_{k} implies the truth of P_{k+1} where P_{k+1} is

$$
\begin{aligned}
& \begin{aligned}
\frac{1}{1.2}+\frac{1}{2.3} & +\frac{1}{3.4}+\cdots \ldots \ldots \ldots \ldots \ldots+\frac{1}{k(k+1)}=\frac{1}{(k+1)(k+2)}=\frac{k+1}{k+2} \\
\text { LHS of }(1) & =\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\cdots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)} \\
& =\frac{k}{(k+1)}+\frac{1}{(k+1)(k+2)} \quad \text { [induction assumption] } \\
& =\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2} \\
& =\text { RHS of }(1)
\end{aligned}
\end{aligned}
$$

Q. 4

A. 4

Let $39+13 \sqrt{3}$ be the sum to n terms of the given GP, that is,

$$
\begin{aligned}
& \mathrm{S}_{n=39+13 \sqrt{3}} \\
& \begin{aligned}
\Rightarrow \quad \frac{a\left(r^{n}-1\right)}{r-1} & =39+13 \sqrt{3} \quad \Rightarrow \frac{(\sqrt{3})\left[(\sqrt{3})^{n}-1\right]}{\sqrt{3}-1} \\
& =13 \sqrt{3}(\sqrt{3}+1)
\end{aligned} \\
& \Rightarrow \quad 3^{n / 2}=1+13(3-1)=1+26=27=3^{3} \Rightarrow n / 2=3 \text { or } n=6 .
\end{aligned}
$$

Thus, 6 terms of $\sqrt{3}, 3,3 \sqrt{3} \ldots \ldots \ldots$. are required to obtain a sum of $39+13 \sqrt{13}$.

Q. 5

A. 5

Differentiating both sides with respect to x, we get $\frac{d y}{d x}=\frac{d}{d x}\left(a e^{m x}+b e^{-m x}\right)$

$$
\begin{aligned}
& =a m e^{m x}-b m e^{-m x} \\
& \qquad \begin{aligned}
\Rightarrow \frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(a m e^{m x}-b m e^{-m x}\right) \\
& =a m^{2} e^{m x}-b m(-m) e^{-m x} \\
& =a m^{2} e^{m x}+b m^{2} e^{-m x} \\
& =m^{2}\left(a e^{m x}+b e^{-m x}\right) \\
& =m^{2} y
\end{aligned}
\end{aligned}
$$

Q. 6
A. 6

$$
\frac{x}{(x+1)(2 x-1)}=\frac{A}{x+1}+\frac{B}{2 x-1}
$$

$$
\Rightarrow x=\mathrm{A}(2 x-1)+\mathrm{B}(x+1)
$$

Put $x=1 / 2$ and -1 to obtain

$$
\begin{aligned}
\frac{1}{2} & =\mathrm{B}\left(\frac{1}{2}+1\right) \Rightarrow \mathrm{B}=\frac{1}{3} \\
-1 & =\mathrm{A}(-3) \Rightarrow \mathrm{A}=\frac{1}{3}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \int \frac{x}{(x+1)(2 x-1)} d x=\frac{1}{3} \int \frac{d x}{(x+1)}+\frac{1}{3} \int \frac{d x}{(2 x-1)} \\
& =\frac{1}{3} \log |x+1|+\frac{1}{3} \cdot \frac{1}{2} \log |2 x-1|+\mathrm{c} \\
& =\frac{1}{3} \log |x+1|+\frac{1}{6} \log |2 x-1|+\mathrm{c}
\end{aligned}
$$

Q. 7
A. 7
(i) As $1+\omega+\omega^{2}=0$, we get

$$
1+\omega=-\omega^{2} \text { and } 1+\omega^{2}=-\omega
$$

Thus,

$$
\begin{aligned}
(1+\omega &)^{2}-\left(1+\omega^{2}\right)^{3}+\omega^{2} \\
& =\left(-\omega^{2}\right)^{2}-(-\omega)^{3}+\omega^{2} \\
& =\omega^{4}+\omega^{3}+\omega^{2}=\omega^{3} \omega+1+\omega^{2} \\
& =\omega+1+\omega^{2}=0
\end{aligned}
$$

Q. 8
A. 8

$$
\alpha+\beta=3 / 2 \text { and } \alpha \beta=-5 / 2
$$

We are to form a quadratic equation whose roots are α^{2}, β^{2}.
Let $S=$ Sum of roots $=\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$.

$$
=\left(\frac{3}{2}\right)^{2}-2\left(-\frac{5}{2}\right)=\frac{9}{4}+5=\frac{29}{4}
$$

$$
P=\text { Product of roots }=\alpha^{2} \beta^{2}=(\alpha \beta)^{2}=\left(-\frac{5}{2}\right)^{2}=\frac{25}{4}
$$

Putting values of S and P in $x^{2}-S x+P=0$, the required equation is

$$
x^{2}-(29 / 4) x+25 / 4=0 \text { or } 4 x^{2}-29 x+25=0 .
$$

Q. 9
A. 9

$$
\begin{aligned}
& \frac{3(x-2)}{5} \leq \frac{5(2-x)}{3} \Leftrightarrow 3[3(x-2] \leq 5[5(2-x)] \\
& \Leftrightarrow \quad 9 x-18 \leq 50-25 x \\
& \Leftrightarrow \quad 9 x+25 x \leq 50+18 \\
& \Leftrightarrow \quad 34 x \leq 68 \text { or } x \leq 2
\end{aligned}
$$

$$
\therefore \text { Solution set is }\{x \mid x \leq 2\}=(-\infty, 2]
$$

The graph of the inequality is

Q. 10
A. 10

$$
\text { Thus, } \mathrm{V}=\frac{4}{3} \pi r^{3}
$$

Differentiating both the sides of this equation with respect to t, we get

$$
\frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

Note that have used the chain rule on the right hand side It is given that $\frac{d V}{d t}=900$ and $r=15$. Thus,

$$
\begin{aligned}
& 900=4 \pi(15)^{2} \frac{d r}{d t} \\
& \Rightarrow \frac{d r}{d t}=\frac{900}{4 \pi(225)}=\frac{1}{\pi} \mathrm{~cm} / \mathrm{sec} .
\end{aligned}
$$

Thus, the radius is increasing at the rate of $=\frac{1}{\pi} \mathrm{~cm} / \mathrm{sec}$.

Q. 11

A. 11

$$
x^{2}=x \Rightarrow x(x-1)=0 \Rightarrow x=0,1 .
$$

Thus, the two curves intersect in $(0,0)$ and (1,1). See Fig 4.8

Required area

$$
=\int_{0}^{1}\left(x-x^{2}\right) d x
$$

$$
=\left[\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right]_{0}^{1}
$$

$$
=\left(\frac{1}{2}-\frac{1}{3}\right) \text { sq. units }
$$

$=\frac{1}{6}$ sq. units.

Q. 12
A. 12

Suppose Investors invests `\(x\) in saving certificate and` y in National Savings Bonds.
As he has just `12000 to invest, we must have \(x+y \leq 12000\). Also, as he has to invest at least` 2000 in savings certificate $x \geq 2000$.
Next, as he must invest at least Rs. 4000 in National Savings Certificate $y \geq 4000$. Yearly income from saving certificate $={ }^{`}=0.08 x$ and from National Savings Bonds $={ }^{`}=$ Rs. 0.1 y
His total income is ` P where
$P=0.08 x+0.1 y$
Thus, the linear programming problem is Maximise
subject to
$x+y \leq 12000$ [Total Money Constraint]
$x \geq 2000$ [Savings Certificate Constraint]
$y \geq 4000$ [National Savings Bonds Constraint]
$x \geq 0, y \geq 0$ [Non-negativity Constraint]
However, note that the constraints $x \geq 0, y \geq 0$, are redundant in view of
$x \geq 2000$ and $y \geq 4000$.

Figure 8
We now calculate the profit at the corner points of the feasible region.
We have

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A}) & =\mathrm{P}(2000,4000)=(0.08)(2000)+(0.1)(4000) \\
& =160+400=560 \\
\mathrm{P}(\mathrm{~B}) & =\mathrm{P}(8000,4000)=(0.08)(2000)+(0.1)(4000) \\
& =640+400=1040 \\
\mathrm{P}(\mathrm{C}) & =\mathrm{P}(2000,10000)=(0.08)(2000)+(0.1)(10000) \\
& =160+1000=1160 .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{C}) & =\mathrm{P}(2000,10000)=(0.08)(2000)+(0.1)(10000) \\
& =160+1000=1160 .
\end{aligned}
$$

Thus, she must invest ₹ 2000 in Savings certificate and ₹ 10000 in National Savings Bonds in order to earn maximum income.
Q. 13
A. 13

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
2 & 5 & -3 & -4 \\
4 & 7 & -4 & -3 \\
6 & 9 & -5 & 2 \\
0 & -9 & 6 & 15
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr}
2 & 5 & -3 & -4 \\
0 & -3 & 2 & 5 \\
0 & -6 & 4 & 14 \\
0 & -9 & 6 & 15
\end{array}\right] \quad\left(\text { by } R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1}\right) \\
& \sim\left[\begin{array}{rrrr}
2 & 5 & -3 & -4 \\
0 & -3 & 2 & 5 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0
\end{array}\right] \quad\left(\text { by } R_{3} \rightarrow R_{3}-2 R_{2}, R_{4} \rightarrow R_{4}-3 R_{2}\right) \\
& =B
\end{aligned}
$$

Clearly, rank of B cannot B 4; as $|B|=0$.
Also, $\left[\begin{array}{rrr}2 & 5 & -4 \\ 0 & -3 & 5 \\ 0 & 0 & 4\end{array}\right]$ is a square submatrix
of order 3 of B and $\left|\begin{array}{rrr}2 & 5 & -4 \\ 0 & -3 & 5 \\ 0 & 0 & 4\end{array}\right|=2 \times(-3) \times 4=-24 \neq 0$
So, rank of matrix B is 3 .
Hence rank of matrix $\mathrm{A}=3$.
Q. 14
A. 14

$$
\left[\begin{array}{rrr}
1 & 6 & 4 \\
2 & 4 & -1 \\
-1 & 2 & 5
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$$

Again, applying $R_{2} \rightarrow R_{2}-2 R_{1}$ and, $R_{3} \rightarrow R_{3}+R_{1}$, we get

$$
\left[\begin{array}{rrr}
1 & 6 & 4 \\
0 & -8 & -9 \\
0 & 8 & 9
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \mathbf{A}
$$

Again, applying $R_{3} \rightarrow R_{3}+R_{2}$, we have

$$
\left[\begin{array}{rrr}
1 & 6 & 4 \\
0 & -8 & -9 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] \mathbf{A}
$$

Since, we have obtained a row of zeros on the L.H.S., we see that A cannot be reduced to an identity matrix. Thus, A is not invertible, Infact, note that A is a singular matrix as $|\mathrm{A}|=0$.

Q. 15

We are given that $m a_{m}=n a_{n}$

$$
\begin{array}{llll}
\Rightarrow & m[a+(m-l) d] & =n[a+(n-l) d] \\
\Rightarrow & m[a+m d-d] & =n[a+n d-d] \\
\Rightarrow & m[\alpha+m d] & =n[\alpha+n d] \text { where } \alpha=a-d \\
\Rightarrow & m \alpha+m^{2} d \quad & =n \alpha+n^{2} d \Rightarrow(m-n) \alpha+\left(m^{2}-n^{2}\right) d=0 \\
\Rightarrow & (m-n)[\alpha+(m+n) d]=0 \quad \Rightarrow \alpha+(m+n) d=0 \\
\Rightarrow & a+(m+n-l) d=0 \quad[\because \alpha=a-d]
\end{array}
$$

Left hand side is nothing but the $(m+n)$ th term of the A.P.
Q. 16
A. 16
: Let $f(x)=\frac{|x|}{x}, x \neq 0$.

Since $|x|= \begin{cases}x, & x>0 \\ -x, & x<0\end{cases}$
$\therefore f(x)= \begin{cases}1, & x>0 \\ -1, & x<0\end{cases}$
So, $\lim _{x \rightarrow 0+} f(x)=\lim _{x \rightarrow 0}(1)=1$ and

$$
\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0}(-1)=-1
$$

Thus $\lim _{x \rightarrow 0} f(x)$ does not exist.

$$
f(x)=|x|=\left\{\begin{array}{cc}
x, & x \geq 0 \\
-x, & x<0
\end{array}\right.
$$

To show that f is continuous at $x=0$, it is sufficient to show that
$\lim _{x \rightarrow 0-} f(x)=\lim _{x \rightarrow 0+}(x)=f(0)$ and
We have

$$
\begin{aligned}
\lim _{x \rightarrow 0-} f(x)=\lim _{h \rightarrow 0+} f(0-h) & =\lim _{h \rightarrow 0+} f(-h) \\
& =\lim _{h \rightarrow 0+}-(-h) \\
& =\lim _{h \rightarrow 0+} h=0
\end{aligned}
$$

$$
\text { and } \begin{aligned}
\lim _{x \rightarrow 0+} f(x)=\lim _{h \rightarrow 0+} f(0+h) & =\lim _{h \rightarrow 0+} f(h) \\
& =\lim _{h \rightarrow 0+}(h)=0 .
\end{aligned}
$$

Thus, $\lim _{h \rightarrow 0-} f(x)=\lim _{h \rightarrow 0+} f(x)=0$
Also, $f(0)=0$
Therefore, $\lim _{x \rightarrow 0+} f(x)=0=f(0)$
Hence, f is continuous at $x=0$.

