

BCS 012 Solved assignment july 2017 and January 2018 session

Q.1 A.1

$$A = \begin{pmatrix} 3 & 4 & 7 \\ 2 & -1 & 3 \\ 1 & 2 & -3 \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ and } B = \begin{pmatrix} 14 \\ 4 \\ 0 \end{pmatrix}$$

The cofactors of |A| are

$$\begin{aligned} A_{11} &= (-1)^{1+1} \begin{vmatrix} -1 & 3 \\ 2 & -3 \end{vmatrix} = -3 \quad A_{12} &= (-1)^{1+2} \begin{vmatrix} 2 & 3 \\ 1 & -3 \end{vmatrix} = 9 \\ \text{and } A_{13} &= (-1)^{1+3} \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = 5. \\ \therefore \quad |A| &= a_{11} A_{11} + a_{12} A_{12} + a_{13} A_{13} = (3)(-3) + 4(9) + 7(5) = 62. \end{aligned}$$

Since $|A| \neq 0$, A is non-singular (invertible). Its remaining cofactors are

$$\begin{aligned} \mathbf{A}_{21} &= (-1)^{2+1} \begin{vmatrix} 4 & 7 \\ 2 & -3 \end{vmatrix} = 26, \quad \mathbf{A}_{22} &= (-1)^{2+2} \begin{vmatrix} 3 & 7 \\ 1 & -3 \end{vmatrix} = -16, \\ \mathbf{A}_{23} &= (-1)^{2+3} \begin{vmatrix} 3 & 4 \\ 1 & 2 \end{vmatrix} = -2, \quad \mathbf{A}_{31} = (-1)^{3+1} \begin{vmatrix} 4 & 7 \\ -1 & -3 \end{vmatrix} = 19, \end{aligned}$$

Q.2 A.2

$$A_{32} = (-1)^{3+2} \begin{vmatrix} 3 & 7 \\ 2 & 3 \end{vmatrix} = 5, \qquad A_{33} = (-1)^{3+3} \begin{vmatrix} 3 & 4 \\ 2 & -1 \end{vmatrix} = -11$$

The adjoint of matrix A is given by

$$\operatorname{adj} A = \begin{pmatrix} -3 & 26 & 19\\ 9 & -16 & 5\\ 5 & -2 & -11 \end{pmatrix}$$

$$\therefore A^{-1} = \frac{1}{|A|} \operatorname{adj} A = \frac{1}{62} \begin{pmatrix} -3 & 26 & 19\\ 9 & -16 & 5\\ 5 & -2 & -11 \end{pmatrix}$$

Also, X = A⁻¹B =
$$\frac{1}{62} \begin{pmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{pmatrix} \begin{pmatrix} 14 \\ 4 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{62} \begin{pmatrix} -3 & 26 & 19 \\ 9 & -16 & 5 \\ 5 & -2 & -11 \end{pmatrix} \begin{pmatrix} 14 \\ 4 \\ 0 \end{pmatrix}$$
$$\Rightarrow \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{62} \begin{pmatrix} -42 + 104 \\ 126 - 64 \\ 70 - 8 \end{pmatrix} = \frac{1}{62} \begin{pmatrix} 62 \\ 62 \\ 62 \\ 62 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Hence x = 1, y = 1, z = 1 is the required solution.

Q.3

A.3 Assume n = k; and solve it..

We shall now show that the true of P_k implies the truth of P_{k+1} where P_{k+1} is

$$\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{k(k+1)} = \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$$
LHS of (1) = $\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)}$
= $\frac{k}{(k+1)} + \frac{1}{(k+1)(k+2)}$ [induction assumption]
= $\frac{k(k+2) + 1}{(k+1)(k+2)} = \frac{k^2 + 2k + 1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$
= RHS of (1)

Q.4 A.4

Let $39 + 13\sqrt{3}$ be the sum to *n* terms of the given GP, that is, $S_{n=} 39 + 13\sqrt{3}$ $\Rightarrow \frac{a(r^{n} - 1)}{r - 1} = 39 + 13\sqrt{3} \Rightarrow \frac{(\sqrt{3})\left[(\sqrt{3})^{n} - 1\right]}{\sqrt{3} - 1}$ $= 13\sqrt{3}(\sqrt{3} + 1)$

 \Rightarrow $3^{n/2} = 1 + 13(3-1) = 1 + 26 = 27 = 3^3 \Rightarrow n/2 = 3 \text{ or } n = 6.$

Thus, 6 terms of $\sqrt{3}$, 3, 3 $\sqrt{3}$ are required to obtain a sum of 39+ 13 $\sqrt{13}$.

Q.5 A.5

Differentiating both sides with respect to x, we get $\frac{dy}{dx} = \frac{d}{dx} (ae^{mx} + be^{-mx})$ = $ame^{mx} - bme^{-mx}$

$$\Rightarrow \frac{d^2 y}{dx^2} = \frac{d}{dx} (ame^{mx} - bme^{-mx})$$
$$= am^2 e^{mx} - bm(-m)e^{-mx}$$
$$= am^2 e^{mx} + bm^2 e^{-mx}$$
$$= m^2 (ae^{mx} + be^{-mx})$$
$$= m^2 y$$

Q.6 A.6

 $\frac{x}{(x+1)(2x-1)} = \frac{A}{x+1} + \frac{B}{2x-1}$

$$\Rightarrow x = A(2x - 1) + B(x + 1)$$

Put $x = \frac{1}{2}$ and -1 to obtain

$$\frac{1}{2} = B\left(\frac{1}{2}+1\right) \Longrightarrow B = \frac{1}{3}$$
$$-1 = A(-3) \Longrightarrow A = \frac{1}{3}$$

Thus,

$$\int \frac{x}{(x+1)(2x-1)} \, dx = \frac{1}{3} \int \frac{dx}{(x+1)} + \frac{1}{3} \int \frac{dx}{(2x-1)}$$
$$= \frac{1}{3} \log|x+1| + \frac{1}{3} \cdot \frac{1}{2} \log|2x-1| + c$$
$$= \frac{1}{3} \log|x+1| + \frac{1}{6} \log|2x-1| + c$$

Q.7 A.7

(i) As $1 + \omega + \omega^2 = 0$, we get

$$1 + \omega = -\omega^2$$
 and $1 + \omega^2 = -\omega$

Thus,

$$(1 + \omega)^{2} - (1 + \omega^{2})^{3} + \omega^{2}$$

= $(-\omega^{2})^{2} - (-\omega)^{3} + \omega^{2}$
= $\omega^{4} + \omega^{3} + \omega^{2} = \omega^{3}\omega + 1 + \omega^{2}$
= $\omega + 1 + \omega^{2} = 0$

Q.8 A.8

 $\alpha + \beta = 3/2$ and $\alpha\beta = -5/2$

We are to form a quadratic equation whose roots are α^2 , β^2 .

Let $S = \text{Sum of roots} = \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2 \alpha\beta$.

$$= \left(\frac{3}{2}\right)^2 - 2\left(-\frac{5}{2}\right) = \frac{9}{4} + 5 = \frac{29}{4}$$

P = Product of roots = $\alpha^2 \beta^2 = (\alpha\beta)^2 = \left(-\frac{5}{2}\right)^2 = \frac{25}{4}$.

Putting values of S and P in $x^2 - Sx + P = 0$, the required equation is

$$x^{2} - (29/4)x + 25/4 = 0$$
 or $4x^{2} - 29x + 25 = 0$.

$$\frac{3(x-2)}{5} \leq \frac{5(2-x)}{3} \Leftrightarrow 3 [3(x-2)] \leq 5[5(2-x)]$$

$$\Leftrightarrow \qquad 9x - 18 \leq 50 - 25x$$

$$\Leftrightarrow \qquad 9x + 25x \leq 50 + 18$$

$$\Leftrightarrow \qquad 34x \leq 68 \text{ or } x \leq 2$$

 \therefore Solution set is $\{x \mid x \le 2\} = (-\infty, 2]$

A.10

Thus,
$$V = \frac{4}{3} \pi r^3$$

Differentiating both the sides of this equation with respect to *t*, we get

$$\frac{dV}{dt} = \frac{4}{3} \pi (3r^2) \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}$$

Note that have used the chain rule on the right hand side

It is given that
$$\frac{dV}{dt} = 900$$
 and $r = 15$. Thus,

$$900 = 4\pi \ (15)^2 \frac{dr}{dt}$$

$$\Rightarrow \frac{dr}{dt} = \frac{900}{4\pi (225)} = \frac{1}{\pi} \ cm/\ sec.$$

Thus, the radius is increasing at the rate of $=\frac{1}{\pi}$ *cm/sec*.

Q.11 A.11

 $x^2 = x \Rightarrow x(x-1) = 0 \Rightarrow x = 0, 1.$

Thus, the two curves intersect in (0,0) and (1,1). See Fig 4.8

Required area

Q.12

Å.12

Suppose Investors invests ` x in saving certificate and ` y in National Savings Bonds.

As he has just ` 12000 to invest, we must have $x + y \le 12000$. Also, as he has to invest at least ` 2000 in savings certificate $x \ge 2000$. Next, as he must invest at least Rs. 4000 in National Savings Certificate $y \ge 4000$. Yearly income from saving certificate = ` = 0.08x and from National Savings Bonds = ` = Rs. 0.1y His total income is ` P where P = 0.08x + 0.1y Thus, the linear programming problem is Maximise

subject to $x + y \le 12000$ [Total Money Constraint] $x \ge 2000$ [Savings Certificate Constraint] $y \ge 4000$ [National Savings Bonds Constraint] $x \ge 0, y \ge 0$ [Non-negativity Constraint] However, note that the constraints $x \ge 0, y \ge 0$, are redundant in view of

 $x \ge 2000$ and $y \ge 4000$.

We now calculate the profit at the corner points of the feasible region. We have

$$P(A) = P(2000,4000) = (0.08) (2000) + (0.1)(4000)$$
$$= 160 + 400 = 560$$

$$P(B) = P(8000,4000) = (0.08)(2000) + (0.1)(4000)$$

$$= 640 + 400 = 1040$$

$$P(C) = P(2000, 10000) = (0.08) (2000) + (0.1)(10000)$$

$$P(C) = P(2000, 10000) = (0.08) (2000) + (0.1)(10000)$$

= 160 + 1000 = 1160.

Thus, she must invest ₹ 2000 in Savings certificate and ₹ 10000 in National Savings Bonds in order to earn maximum income.

Q.13 A.13

$\mathbf{A} = \begin{bmatrix} 2 & 5 & -3 & -4 \\ 4 & 7 & -4 & -3 \\ 6 & 9 & -5 & 2 \\ 0 & -9 & 6 & 15 \end{bmatrix}$	
$\sim \begin{bmatrix} 2 & 5 & -3 & -4 \\ 0 & -3 & 2 & 5 \\ 0 & -6 & 4 & 14 \\ 0 & -9 & 6 & 15 \end{bmatrix}$	(by $R_2 \rightarrow R_2 - 2R_1, R_3 \rightarrow R_3 - 3R_1$)
$\sim \begin{bmatrix} 2 & 5 & -3 & -4 \\ 0 & -3 & 2 & 5 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	(by $R_3 \rightarrow R_3 - 2R_2, R_4 \rightarrow R_4 - 3R_2$)
= B	

Clearly, rank of B cannot B 4; as |B| = 0.

Also, $\begin{bmatrix} 2 & 5 & -4 \\ 0 & -3 & 5 \\ 0 & 0 & 4 \end{bmatrix}$ is a square submatrix of order 3 of B and $\begin{vmatrix} 2 & 5 & -4 \\ 0 & -3 & 5 \\ 0 & 0 & 4 \end{vmatrix} = 2 \times (-3) \times 4 = -24 \neq 0$

So, rank of matrix B is 3.

Hence rank of matrix A = 3.

Q.14 A.14

A - 13 A

$$\begin{bmatrix} 1 & 6 & 4 \\ 2 & 4 & -1 \\ -1 & 2 & 5 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Again, applying $R_2 \rightarrow R_2-2 R_1$ and $R_3 \rightarrow R_3+R_1$, we get

[1	6	4		[1	0	0	
0	-8	-9	=	-2	1	0	A
Lo	8	9]		l 1	0	1.	

Again, applying $R_3 \rightarrow \ R_3 + \ R_2$, we have

[1	6	4]	ſ	1	0	0]	
0	-8	-9	= -	-2	1	0	A
10	0	0]	l	1	0	1]	

Since, we have obtained a row of zeros on the L.H.S., we see that A cannot be reduced to an identity matrix. Thus, A is not invertible, Infact, note that A is a singular matrix as |A| = 0.

Q.15 A.15

We are given that $m a_m = n a_n$ $\Rightarrow m [a + (m - 1) d] = n [a + (n - 1)d]$ $\Rightarrow m [a + md - d] = n [a + nd - d]$ $\Rightarrow m [a + md] = n[a + nd] \text{ where } a = a - d$ $\Rightarrow m a + m^2 d = n a + n^2 d \Rightarrow (m - n) a + (m^2 - n^2) d = 0$ $\Rightarrow (m - n)[a + (m + n)d] = 0 \Rightarrow a + (m + n)d = 0$ $\Rightarrow a + (m + n - 1)d = 0 \qquad [\because a = a - d]$

Left hand side is nothing but the (m + n)th term of the A.P.

Q.16
A.16
: Let
$$f(x) = \frac{|x|}{x}$$
, $x \neq 0$.
Since $|x| = \begin{cases} x, & x > 0 \\ -x, & x < 0 \end{cases}$
 $\therefore f(x) = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$
So, $\lim_{x \to 0^+} f(x) = \lim_{x \to 0} (1) = 1$ and $\lim_{x \to 0^-} f(x) = \lim_{x \to 0} (-1) = -1$
Thus $\lim_{x \to 0^+} f(x)$ does not exist

 $\lim_{x \to 0} f(x)$ does not ex

$$f(x) = |x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$$

To show that f is continuous at x = 0, it is sufficient to show that

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} (x) = f(0) \text{ and}$$

We have

 $\lim_{x \to 0-} f(x) = \lim_{h \to 0+} f(0-h) = \lim_{h \to 0+} f(-h)$

$$=\lim_{h\to 0+}-(-h)$$

$$=\lim_{h\to 0+} h = 0$$

and $\lim_{x \to 0^+} f(x) = \lim_{h \to 0^+} f(0+h) = \lim_{h \to 0^+} f(h)$

$$= \lim_{h \to 0+} (h) = 0.$$

